如何写论文?写好论文?免费论文网提供各类免费论文写作素材!
当前位置:免费论文网 > 范文百科 > 高分子材料结构与成分分析的方法有哪些

高分子材料结构与成分分析的方法有哪些

来源:免费论文网 | 时间:2016-12-25 10:56:31 | 移动端:高分子材料结构与成分分析的方法有哪些

篇一:高分子材料分析测试与研究方法复习材料

一. 傅里叶红外光谱仪

1. 什么是红外光谱图

当一束连续变化的各种波长的红外光照射样品时,其中一部分被吸收,吸收的这部分光能就转变为分子的振动能量和转动能量;另一部分光透过,若将其透过的光用单色器进行色散,就可以得到一谱带。若以波长或波数为横坐标,以百分吸收率或透光度为纵坐标,把这谱带记录下来,就得到了该样品的红外吸收光谱图,也有称红外振-转光谱图

2. 红外光谱仪基本工作原理

用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收一定频率的红外线,把分子吸收的红外线的情况用仪器记录下来,便能得到全面反映试样成份特征的光谱,从而推测化合物的类型和结构。

3. 红外光谱产生的条件

(1) 辐射应具有能满足物质产生振动跃迁所需的能量;

(2) 辐射与物质间有相互偶合作用。

4. 红外光谱图的三要素

峰位、峰强和峰形

5. 红外光谱样品的制备方法

1) 固体样品的制备

a. 压片法

b. 糊状法:

c. 溶液法

2) 液体样品的制备

a. 液膜法

b. 液体吸收池法

3) 气态样品的制备: 气态样品一般都灌注于气体池内进行测试

4) 特殊样品的制备—薄膜法

a. 熔融法

b. 热压成膜法

c. 溶液制膜法

6. 红外对供试样品的要求

① 试样纯度应大于98%,或者符合商业规格,这样才便于与纯化合物的标准光谱或商业光谱进行对照, 多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相重叠,难予解析。

② 试样不应含水(结晶水或游离水)

水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的盐窗。所用试样应当经过干燥处理。

③ 试样浓度和厚度要适当

使最强吸收透光度在5~20%之间

7. 红外光谱特点

1)红外吸收只有振-转跃迁,能量低;

2)应用范围广:除单原子分子及单核分子外,几乎所有有机物均有红外吸收;

3)分子结构更为精细的表征:通过红外光谱的波数位置、波峰数目及强度确定分子基团、分子结构;

4)分析速度快;

5)固、液、气态样均可用,且用量少、不破坏样品;

6)与色谱等联用(GC-FTIR)具有强大的定性功能;

7)可以进行定量分析;

二. 紫外光谱

1. 什么是紫外-可见分光光度法?产生的原因及其特点?

紫外-可见分光光度法也称为紫外-可见吸收光谱法,属于分子吸收光谱,是利用某些物质对200-800 nm光谱区辐射的吸收进行分析测定的一种方法。紫外-可见吸收光谱主要产生于分子价电子(最外层电子)在电子能级间的跃迁。该方法具有灵敏度高,准确度好,使用的仪器设备简便,价格廉价,且易于操作等优点,故广泛应用于无机和有机物质的定性和定量测定。

2. 什么是吸收曲线?及其吸收曲线的特点?

测量某种物质对不同波长单色光的吸收程度,以波长为横坐标, 吸光度为纵坐标作图,可得到一条曲线,称为吸收光谱曲线或光吸收曲线,它反映了物质

对不同波长光的吸收情况。

① 同一种物质对不同波长光的吸光度不同。吸光度最大处对应的波长称为最大吸收波长λmax。

② 不同浓度的同一种物质,其吸收曲线形状相似λmax不变。而对于不同物质,它们的吸收曲线形状和λmax则不同。

③ 吸收曲线可以提供物质的结构信息,并作为物质定性分析的依据之一。 ④ 不同浓度的同一种物质,在某一定波长下吸光度A有差异,在λmax处吸光度A的差异最大。此特性可作作为物质定量分析的依据。

⑤ 在λmax处吸光度随浓度变化的幅度最大,所以测定最灵敏。吸收曲线是定量分析中选择入射光波长的重要依据。

3. 分光光度法定量定性的依据是什么?

定性的依据:同一种吸光物质,浓度不同时,吸收曲线的形状相同,最大吸收波长不变,只是相应的吸光度大小不同。

定量的依据:吸光度的大小与其浓度相关,其定量关系符合朗伯-比耳定律。

4. 什么是朗伯-比耳定律,及其各物理量所代表的意义? 公式为:A?lg

a I0?abc I比例常数,称为吸光系数

b 液层厚度,单位cm

c 浓度。当浓度c以g·L-1为单位,液层厚度b以cm为单位时,吸光系数的单位为:L·g-1·cm-1。

三. 质谱分析

1. 什么是质谱法?

一般采用高能离子束(如电子)轰击样品蒸气分子,打掉分子中的价电子,形成带正电荷的离子,然后按核质比(m/z)的大小顺序进行收集和记录,得到质谱图,根据质谱图可实现对样品成分、结构和相对分子质量的测定。

2. 质谱仪的工作原理

质谱仪是利用电磁学原理,使带电的样品离子按质核比进行分离的装置,离子电离后经加速进入磁场中,其动能与加速电压及电荷有关,即

ezU?1m?2 2

式中z为离子电荷数,e为元电荷, U为加速电压。显然,在一定的加速电压下,离子的运动速度与质量m有关。具有速度v的带电粒子进入质谱仪分析器的电磁场中,将各种离子按m/z的大小实现分离和测定

3. 质谱分析法有哪些特点?

1) 应用范围广。测定样品可以是无机物,也可以是有机物。应用上可做化合物

的结构分析、测定原子量与相对分子量、同位素分析、生产过程监测、环境监测、热力学与反应动力学、空间探测等。被分析的样品可以是气体和液体,也可以是固体。

2) 灵敏度高,样品用量少。目前有机质谱仪的绝对灵敏度可达50 pg(pg为

10?12g),无机质谱仪绝对灵敏度可达10?14 。用微克级样品即可得到满意的分析结果。

3) 分析速度快,并可实现多组分同时测定。

4) 与其它仪器相比,仪器结构复杂,价格昂贵,使用及维修比较困难。对样品

有破坏性。

4. 质谱仪由哪些系统构成?

有质谱是通过对样品电离后产生的具有不同m/z的离子来进行分离分析的,仪包括进样系统、离子系统、质量分析器、检测器和真空系统。

四. 核磁共振

1. 核磁共振定义

在强磁场中,一些具有磁性的原子核的能量裂分为2个或2个以上的能量,如果此时外加的能量等于相邻2个能级之差,则该核就会吸收能量,产生共振吸收,从低能态跃迁至高能态,同时产生核磁共振信号,得到核磁共振谱。

2. 化学位移的定义,及其影响化学位移的各种因素?

这种由于氢原子在分子中的化学环境不同,因而在不同磁场强度下产生吸收峰,峰与峰之间的差距称为化学位移。

化学位移是由于核外电子云密度不同而造成的,因此影响核外电子云密度分布的因素都会影响化学位移。

1)诱导效应

由于电负性基团的存在,如卤素、硝基、氰基等,使之与之相连的核外电子云密度下降,从而产生去屏蔽作用。使共振信号移向低场。

2)共轭效应

共轭效应亦可使电子云密度发生变化,从而使化学位移向高场或低场变化。

3)磁各向异性效应

4)氢键

当形成分子内氢键时,氢质子周围的电子云密度降低,氢键中质子的信号明显的移向低磁场,使化学位移值变大。

3. 核磁共振谱图可以得到哪些信息?

(1)由吸收峰数可知分子中氢原子的种类。

(2)由化学位移可了解各类氢的化学环境。

(3)由裂分峰数目大致可知各种氢的数目。

(4)由各种峰的面积比即知各种氢的数目。

五. X射线分析

1. X射线衍射的基本原理是什么?

X射线在晶体中的衍射现象,实质上是大量的原子散射波互相干涉的结果。每种晶体所产生的衍射花样都反映出晶体内部的原子分布规律。

衍射花样可以由两个方面组成:

1)衍射线在空间的分布规律(衍射几何)(由晶胞大小、形状和位向决定的)

2)衍射线束的强度(取决于原子在原子在晶胞中的位置、数量和种类)

六. 热重分析法——TG

1. 什么是热重分析法

热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系。检测质量的变化最常用的办法就是用热天平,测量的原理有两种,可分为变位法和零位法。

七. 差示扫描量热法(DSC)

1. 什么是差示扫描量热法?根据所用测量方法的不同,可分为哪几种方法? 在程序控制温度下,测量物质与参比物之间的能量差随温度变化关系的一种技术。功率补偿型DSC和热流型DSC。

篇二:高分子检测 ,成分分析

高分子检测 ,成分分析

高分子材料是指以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料。高分子材料独特的结构和易改性、易加工特点,使其具有其他材料不可比拟、不可取代的优异性能,从而广泛用于科学技术、国防建设和国民经济各个领域。

涉及产品检测领域:橡胶是一类线型柔性高分子聚合物。有天然橡胶和合成橡胶两种。宇冠检测中心可提供一站式橡胶制品及材料分析检测服务。塑料材料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。宇冠检测中心可提供一站式塑料制品及材料分析检测服务。复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。 胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。油墨是用于包装材料印刷的重要材料,它通过印刷将图案、文字表现在承印物上油墨中包括主要成分和辅助成分。东标检测中心专业提供油墨分析化验服务.高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。

宇冠检测中心以颜料及染料技术需求和发展为导向,以资源整合、技术共享为基础,提供性能检测、配方分析、含量对比分析等我。宇冠检测可提供纸张、纸箱等相关纸制品检测各项质量和性能指标检测,项目包括:抗张强度向吸液高度、pH值、渗漏性能、微生物等。

篇三:常见的化学成分分析方法及其原理

常见的化学成分分析方法

一、化学分析方法

化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。

1.1重量分析

指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。

1.2容量分析

滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。

酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。

络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀 剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。

氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。

沉淀滴定分析:是以沉淀反应为基础的一种滴定分析方法,又称银量法(以硝酸银液为滴定液,测定能与Ag+反应生成难溶性沉淀的一种容量分析法)。虽然可定量进行的沉淀反应很多,但由于缺乏合适的指示剂,而应用于沉淀滴定的反应并不多,目前比较有实际意义的是银量法。

二、仪器分析

2.1电化学分析

是指应用电化学原理和技术,是利用原电池模型的原理来分析所测样品的电极种类及电解液的组成及含量和两者之间的电化学性质的关系而建立起来的一类分析方法。现在一般是使用电化学工作站来对样品进行测试。其特点是灵敏度高,选择性好,设备简单,操作方便,应用范围广。根据测量的电信号不同,电化学分析法可分为电位法、电解法、电导法和伏安法。

电位法是通过测量电极电动势以求得待测物质含量的分析方法。若根据电极电位测量值,直接求算待测物的含量,称为直接电位法;若根据滴定过程中电极电位的变化以确定滴定的终点,称为电位滴定法。

电解法是根据通电时,待测物在电他电极上发生定量沉积的性质以确定待测物含量的分析方法。

电导法是根据电解质溶液中溶质溶度的不同,其电导率也不同的原理,而测量分析溶液的电导以确定待测物含量的分析方法。

伏安法是将一微电极插入待测溶液中,根据被测物质在电解过程中的电流-电压变化曲线来进行定性或定量分析的一种电化学分析方法。

2.2光化学分析

光化学分析是基于能量作用于物质后,根据物质发射、吸收电磁辐射以及物质与电磁辐射的相互作用来进行分析的化学分析方法。其主要可分为光谱法和非光谱法两大类。光谱法是基于辐射能与物质相互作用时,测量有无之内不发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度而进行分析的方法。主要有原子吸收光谱法(AAS)、原子发射光谱法(AES)、原子荧光分析法(AFS)、红外光谱法(IR)等。非光谱法是基于光的波动性而对物质进行测试,主要有分光光度法和旋光法等。

原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。

其基本原理是每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比:A=KC 式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。

2.2.2原子发射光谱法(AES)

原子发射光谱法是依据各种元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,而进行元素的定性与定量分析的方法,是光谱学各个分支中最为古老的一种,可同时检测一个样品中的多种元素。

其基本原理是各物质的组成元素的原子的原子核外围绕着不断运动的电子,电子处在一定的能级上,具有一定的能量。从整个原子来看,在一定的运动状态下,它也是处在一定的能级上,具有一定的能量。在一般情况下,大多数原子处在最低的能级状态,即基态。基态原子在激发光源(即外界能量)的作用下,获得足够的能量,其外层电子跃迁到较高能级状态的激发态,这个过程叫激发。处在激发态的原子是很不稳定的,在极短的时间内(10s)外层电子便跃迁回基态或其它较低的能态而释放出多余的能量。释放能量的方式可以是通过与其它粒子的碰撞,进行能量的传递,这是无辐射跃迁,也可以以一定波长的电磁波形式辐射出去,其释放的能量及辐射线的波长(频率)要符合波尔的能量定律。

原子荧光分析法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析技术。

其基本原理是通过测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度而进行定量分析。原子荧光的波长在紫外、可见光区。气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,约经10-8秒,又跃迁至基态或低能态,同时发射出荧光。若原子荧光的波长与吸收线波长相同,称为共振荧光;若不同,则称为非共振荧光。共振荧光强度大,分析中应用最多。在一定条件下,共振荧光强度与样品中某元素浓度成正比,从而通过测试共振荧光的强度来确定待测元素的含量。

2.2.4分光光度法

分光光度法是通过测定被测物质在特定波长处或一定波长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法。

其基本原理是在分光光度计测试中,将不同波长的光连续地照射到一定浓度的样品溶液时,便可得到与不同波长相对应的吸收强度。再以波长(λ)为横坐标,吸收强度(A)为纵坐标,就可绘出该物质的吸收光谱曲线。利用该曲线进行物质定性、定量的分析方法,称为分光光度法,也称为吸收光谱法。用紫外光源测定无色物质的方法,称为紫外分光光度法;用可见光光源测定有色物质的方法,称为可见光光度法。

2.2.5旋光法

旋光法是基于许多物质都具有旋光性(又称光学活性)如含有手征性碳原子的有机化合物,从而利用物质的旋光性质测定溶液浓度的方法。

其基本原理是将样品在指定的溶剂中配成一定浓度的溶液,采用旋光计测得样品的旋光度并算出比旋光度,然后与标准比较,或以不同浓度溶液制出标准曲线即工作曲线,求出含量。

2.3色谱分析

色谱分析是指通过利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果。色谱法中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。

2.3.1气相色谱法

气相色谱法的基本原理是利用气相色谱仪中的一根流通型的狭长管道(色谱柱)。在色谱柱中,不同的样品由于具有不同的物理和化学性质,与特定的柱填充物(固定相)有着不同的相互作用而被气流(载气,流动相)以不同的速率带动。当化合物从柱的末端流出时,它们被检测器检测到,产生相应的信号,并被转化为电信号输出。在色谱柱中固定相的作用是分离不同的组分,使得不同的组分在不同的时间(保留时间)从柱的末端流出。其它影响物质流出柱的顺序及保留时间的因素包括载气的流速,温度等。而气相色谱法中可以使用的检测器有很多种,最常用的有火焰电离检测器(FID)与热导检测器(TCD)。

2.3.2液相色谱法

液相色谱法的基本原理是基于混合物中各组分对两相亲和力的差别。根据固定相的不同,液相色谱分为液固色谱、液液色谱和键合相色谱。应用最广的是以硅胶为填料的液固色谱和以微硅胶为基质的键合相色谱。根据固定相的形式,液相色谱法可以分为柱色谱法、纸色谱法及薄层色谱法。按吸附力可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱。近年来,在液相柱色谱系统中加上高压液流系统,使流动相在高压下快速流动,以提高分离效果,因此出现了高效(又称高压)液相色谱法。检测器主要有紫外吸收检测器、荧光检测器、电化学检测器和折光示差检测器,其中以紫外吸收检测器使用最广。

2.4波谱分析

波谱分析是指物质在光(电磁波)的照射下,引起分子内部某种运动,从而吸收或散射某种波长的光,将入射光强度变化或散射光的信号记录下来,得到一张信号强度与光的波长或波数(频率)或散射角度的关系图,用于物质结构、组成及化学变化的分析,这就叫波谱法。波谱法主要包括红外光谱、紫外光谱、核磁共振和质谱,简称为四谱。除此之外还包含有拉曼光谱等。

2.4.1红外光谱法(IR)


高分子材料结构与成分分析的方法有哪些》由:免费论文网互联网用户整理提供;
链接地址:http://www.csmayi.cn/show/129720.html
转载请保留,谢谢!